StudioLifecycleConfig ​
The StudioLifecycleConfig resource lets you manage AWS SageMaker Studio Lifecycle Configurations that define scripts to run when users start or stop their studio sessions.
Minimal Example ​
Create a basic StudioLifecycleConfig with required properties and a couple of optional tags.
ts
import AWS from "alchemy/aws/control";
const lifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("basic-lifecycle-config", {
StudioLifecycleConfigAppType: "JupyterServer",
StudioLifecycleConfigName: "BasicConfig",
StudioLifecycleConfigContent: "echo 'Welcome to SageMaker Studio!'",
Tags: [
{ Key: "Environment", Value: "Development" },
{ Key: "Owner", Value: "DataScienceTeam" }
]
});
Advanced Configuration ​
Configure a StudioLifecycleConfig with a custom script that runs additional commands.
ts
const advancedLifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("advanced-lifecycle-config", {
StudioLifecycleConfigAppType: "JupyterServer",
StudioLifecycleConfigName: "AdvancedConfig",
StudioLifecycleConfigContent: `
#!/bin/bash
echo 'Setting up environment...'
conda install -y numpy pandas matplotlib
echo 'Environment setup complete!'
`,
Tags: [
{ Key: "Environment", Value: "Production" }
]
});
User-Specific Configuration ​
Create a StudioLifecycleConfig that runs specific commands tailored for a user.
ts
const userSpecificLifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("user-specific-lifecycle-config", {
StudioLifecycleConfigAppType: "JupyterServer",
StudioLifecycleConfigName: "UserSpecificConfig",
StudioLifecycleConfigContent: `
#!/bin/bash
echo 'Starting custom setup for user session...'
pip install --upgrade boto3
echo 'Custom setup completed for user session.'
`
});