MLTransform ​
The MLTransform resource lets you create and manage AWS Glue MLTransforms for transforming data using machine learning algorithms.
Minimal Example ​
Create a basic MLTransform with required properties and a few common optional settings.
ts
import AWS from "alchemy/aws/control";
const mlTransform = await AWS.Glue.MLTransform("basicTransform", {
role: "arn:aws:iam::123456789012:role/service-role/AWSGlueServiceRole",
transformParameters: {
// Example transform parameters
transformations: [
{
name: "SampleTransform",
parameters: {
modelType: "linearRegression"
}
}
]
},
inputRecordTables: [
{
name: "inputTable",
databaseName: "myDatabase"
}
],
description: "A simple MLTransform for demonstration purposes"
});
Advanced Configuration ​
Configure an MLTransform with advanced settings, including encryption and increased capacity.
ts
const advancedMlTransform = await AWS.Glue.MLTransform("advancedTransform", {
role: "arn:aws:iam::123456789012:role/service-role/AWSGlueServiceRole",
transformParameters: {
transformations: [
{
name: "ComplexTransform",
parameters: {
modelType: "randomForest",
featureColumns: ["column1", "column2"],
targetColumn: "target"
}
}
]
},
inputRecordTables: [
{
name: "inputTable",
databaseName: "myDatabase"
}
],
transformEncryption: {
// Example encryption configuration
mlUserDataEncryption: {
// Encryption settings
mode: "DISABLED"
}
},
maxCapacity: 10,
tags: {
Project: "MLTransformDemo",
Environment: "Development"
}
});
Using Custom Worker Types ​
Create an MLTransform that specifies a custom worker type and number of workers.
ts
const customWorkerMlTransform = await AWS.Glue.MLTransform("customWorkerTransform", {
role: "arn:aws:iam::123456789012:role/service-role/AWSGlueServiceRole",
transformParameters: {
transformations: [
{
name: "CustomWorkerTransform",
parameters: {
modelType: "supportVectorMachine",
hyperparameters: {
kernel: "rbf",
gamma: "scale"
}
}
}
]
},
inputRecordTables: [
{
name: "inputTable",
databaseName: "myDatabase"
}
],
workerType: "G.1X",
numberOfWorkers: 2,
description: "MLTransform using a custom worker type"
});
Adding Retry Logic ​
Configure an MLTransform with retry logic for handling failures.
ts
const retryMlTransform = await AWS.Glue.MLTransform("retryTransform", {
role: "arn:aws:iam::123456789012:role/service-role/AWSGlueServiceRole",
transformParameters: {
transformations: [
{
name: "RetryTransform",
parameters: {
modelType: "decisionTree",
maxDepth: 5
}
}
]
},
inputRecordTables: [
{
name: "inputTable",
databaseName: "myDatabase"
}
],
maxRetries: 3,
timeout: 60,
description: "MLTransform with retry logic for fault tolerance"
});
These examples demonstrate various configurations for the AWS Glue MLTransform resource, helping you to leverage machine learning for data transformation efficiently.