MlflowTrackingServer ​
The MlflowTrackingServer resource allows you to manage an AWS SageMaker MlflowTrackingServer for tracking machine learning experiments and managing model artifacts.
Minimal Example ​
Create a basic MlflowTrackingServer instance with required properties and a common optional property.
ts
import AWS from "alchemy/aws/control";
const mlflowTrackingServer = await AWS.SageMaker.MlflowTrackingServer("myMlflowTrackingServer", {
TrackingServerName: "my-tracking-server",
ArtifactStoreUri: "s3://my-artifact-store",
RoleArn: "arn:aws:iam::123456789012:role/my-sagemaker-role"
});
Advanced Configuration ​
Configure the MlflowTrackingServer with additional optional properties such as MLflow version and automatic model registration.
ts
const advancedMlflowTrackingServer = await AWS.SageMaker.MlflowTrackingServer("advancedMlflowTrackingServer", {
TrackingServerName: "advanced-tracking-server",
ArtifactStoreUri: "s3://my-advanced-artifact-store",
RoleArn: "arn:aws:iam::123456789012:role/my-sagemaker-role",
MlflowVersion: "1.20.2",
AutomaticModelRegistration: true,
WeeklyMaintenanceWindowStart: "Mon:00:00" // Maintenance window starts on Monday at midnight
});
Custom Size Configuration ​
Create a MlflowTrackingServer with a custom tracking server size.
ts
const customSizeMlflowTrackingServer = await AWS.SageMaker.MlflowTrackingServer("customSizeMlflowTrackingServer", {
TrackingServerName: "custom-size-tracking-server",
ArtifactStoreUri: "s3://my-custom-size-artifact-store",
RoleArn: "arn:aws:iam::123456789012:role/my-sagemaker-role",
TrackingServerSize: "large" // Specify the size of the tracking server
});
Tagging Resources ​
Add tags to your MlflowTrackingServer for better resource management.
ts
const taggedMlflowTrackingServer = await AWS.SageMaker.MlflowTrackingServer("taggedMlflowTrackingServer", {
TrackingServerName: "tagged-tracking-server",
ArtifactStoreUri: "s3://my-tagged-artifact-store",
RoleArn: "arn:aws:iam::123456789012:role/my-sagemaker-role",
Tags: [
{ Key: "Environment", Value: "Production" },
{ Key: "Team", Value: "DataScience" }
]
});