Pipeline ​
The Pipeline resource lets you create and manage AWS SageMaker Pipelines for orchestrating complex machine learning workflows.
Minimal Example ​
Create a basic SageMaker Pipeline with required properties and a few common optional settings.
ts
import AWS from "alchemy/aws/control";
const simplePipeline = await AWS.SageMaker.Pipeline("simplePipeline", {
PipelineName: "SimplePipeline",
PipelineDescription: "A simple pipeline for demonstration purposes.",
RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole",
PipelineDefinition: {
// Define the pipeline steps and configurations here
},
Tags: [
{ Key: "Environment", Value: "Development" },
{ Key: "Project", Value: "Machine Learning" }
]
});
Advanced Configuration ​
Configure a pipeline with parallelism settings and a display name.
ts
const advancedPipeline = await AWS.SageMaker.Pipeline("advancedPipeline", {
PipelineName: "AdvancedPipeline",
PipelineDisplayName: "Advanced ML Pipeline",
PipelineDescription: "An advanced pipeline with parallel tasks.",
RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole",
ParallelismConfiguration: {
MaxParallelExecution: 5, // Limit the maximum parallel executions
MaxConcurrentExecutions: 10 // Limit the number of concurrent executions
},
PipelineDefinition: {
// Define the pipeline steps and configurations here
}
});
Adoption of Existing Resources ​
Adopt an existing pipeline instead of creating a new one if it already exists.
ts
const adoptPipeline = await AWS.SageMaker.Pipeline("adoptPipeline", {
PipelineName: "ExistingPipeline",
RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole",
adopt: true, // Set to true to adopt the existing resource
PipelineDefinition: {
// Define the pipeline steps and configurations here
}
});
Complete Pipeline Definition ​
Demonstrate a pipeline with a complete definition including steps and parameters.
ts
const completePipeline = await AWS.SageMaker.Pipeline("completePipeline", {
PipelineName: "CompleteMLPipeline",
RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole",
PipelineDefinition: {
PipelineDefinition: {
PipelineSteps: [
{
Name: "DataPreprocessing",
Type: "Processing",
Arguments: {
// Specify arguments for processing step
}
},
{
Name: "ModelTraining",
Type: "Training",
Arguments: {
// Specify arguments for training step
}
},
{
Name: "ModelEvaluation",
Type: "Evaluation",
Arguments: {
// Specify arguments for evaluation step
}
}
]
}
}
});