Skip to content
GitHubXDiscordRSS

StudioLifecycleConfig

Learn how to create, update, and manage AWS SageMaker StudioLifecycleConfigs using Alchemy Cloud Control.

The StudioLifecycleConfig resource lets you manage AWS SageMaker Studio Lifecycle Configurations that define scripts to run when users start or stop their studio sessions.

Create a basic StudioLifecycleConfig with required properties and a couple of optional tags.

import AWS from "alchemy/aws/control";
const lifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("basic-lifecycle-config", {
StudioLifecycleConfigAppType: "JupyterServer",
StudioLifecycleConfigName: "BasicConfig",
StudioLifecycleConfigContent: "echo 'Welcome to SageMaker Studio!'",
Tags: [
{ Key: "Environment", Value: "Development" },
{ Key: "Owner", Value: "DataScienceTeam" }
]
});

Configure a StudioLifecycleConfig with a custom script that runs additional commands.

const advancedLifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("advanced-lifecycle-config", {
StudioLifecycleConfigAppType: "JupyterServer",
StudioLifecycleConfigName: "AdvancedConfig",
StudioLifecycleConfigContent: `
#!/bin/bash
echo 'Setting up environment...'
conda install -y numpy pandas matplotlib
echo 'Environment setup complete!'
`,
Tags: [
{ Key: "Environment", Value: "Production" }
]
});

Create a StudioLifecycleConfig that runs specific commands tailored for a user.

const userSpecificLifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("user-specific-lifecycle-config", {
StudioLifecycleConfigAppType: "JupyterServer",
StudioLifecycleConfigName: "UserSpecificConfig",
StudioLifecycleConfigContent: `
#!/bin/bash
echo 'Starting custom setup for user session...'
pip install --upgrade boto3
echo 'Custom setup completed for user session.'
`
});