StudioLifecycleConfig
The StudioLifecycleConfig resource lets you manage AWS SageMaker Studio Lifecycle Configurations that define scripts to run when users start or stop their studio sessions.
Minimal Example
Section titled “Minimal Example”Create a basic StudioLifecycleConfig with required properties and a couple of optional tags.
import AWS from "alchemy/aws/control";
const lifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("basic-lifecycle-config", { StudioLifecycleConfigAppType: "JupyterServer", StudioLifecycleConfigName: "BasicConfig", StudioLifecycleConfigContent: "echo 'Welcome to SageMaker Studio!'", Tags: [ { Key: "Environment", Value: "Development" }, { Key: "Owner", Value: "DataScienceTeam" } ]});
Advanced Configuration
Section titled “Advanced Configuration”Configure a StudioLifecycleConfig with a custom script that runs additional commands.
const advancedLifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("advanced-lifecycle-config", { StudioLifecycleConfigAppType: "JupyterServer", StudioLifecycleConfigName: "AdvancedConfig", StudioLifecycleConfigContent: ` #!/bin/bash echo 'Setting up environment...' conda install -y numpy pandas matplotlib echo 'Environment setup complete!' `, Tags: [ { Key: "Environment", Value: "Production" } ]});
User-Specific Configuration
Section titled “User-Specific Configuration”Create a StudioLifecycleConfig that runs specific commands tailored for a user.
const userSpecificLifecycleConfig = await AWS.SageMaker.StudioLifecycleConfig("user-specific-lifecycle-config", { StudioLifecycleConfigAppType: "JupyterServer", StudioLifecycleConfigName: "UserSpecificConfig", StudioLifecycleConfigContent: ` #!/bin/bash echo 'Starting custom setup for user session...' pip install --upgrade boto3 echo 'Custom setup completed for user session.' `});