Skip to content
GitHubXDiscord

Project

The Project resource allows you to manage AWS SageMaker Projects that help organize your machine learning workflows, including associated resources and configurations.

Create a basic SageMaker Project with required properties.

import AWS from "alchemy/aws/control";
const basicProject = await AWS.SageMaker.Project("basicProject", {
ProjectName: "MachineLearningProject",
ServiceCatalogProvisioningDetails: {
// Add relevant provisioning details here
}
});

Configure a SageMaker Project with a description and tags.

const detailedProject = await AWS.SageMaker.Project("detailedProject", {
ProjectName: "AdvancedMachineLearningProject",
ProjectDescription: "This project focuses on advanced machine learning techniques.",
ServiceCatalogProvisioningDetails: {
// Add relevant provisioning details here
},
Tags: [
{ Key: "Environment", Value: "Development" },
{ Key: "Team", Value: "DataScience" }
]
});

Create a project that includes service catalog provisioned product details.

const advancedProject = await AWS.SageMaker.Project("advancedProject", {
ProjectName: "FullMachineLearningProject",
ProjectDescription: "Project for full machine learning lifecycle.",
ServiceCatalogProvisionedProductDetails: {
// Specify the provisioned product details here
},
ServiceCatalogProvisioningDetails: {
// Add relevant provisioning details here
},
Tags: [
{ Key: "ProjectType", Value: "Research" },
{ Key: "Priority", Value: "High" }
]
});

Demonstrate how to adopt an existing SageMaker Project if one already exists.

const adoptExistingProject = await AWS.SageMaker.Project("adoptExistingProject", {
ProjectName: "ExistingMachineLearningProject",
ServiceCatalogProvisioningDetails: {
// Add relevant provisioning details here
},
adopt: true // Adopts the existing resource
});