Skip to content
GitHubXDiscordRSS

Project

Learn how to create, update, and manage AWS SageMaker Projects using Alchemy Cloud Control.

The Project resource allows you to manage AWS SageMaker Projects that help organize your machine learning workflows, including associated resources and configurations.

Create a basic SageMaker Project with required properties.

import AWS from "alchemy/aws/control";
const basicProject = await AWS.SageMaker.Project("basicProject", {
ProjectName: "MachineLearningProject",
ServiceCatalogProvisioningDetails: {
// Add relevant provisioning details here
}
});

Configure a SageMaker Project with a description and tags.

const detailedProject = await AWS.SageMaker.Project("detailedProject", {
ProjectName: "AdvancedMachineLearningProject",
ProjectDescription: "This project focuses on advanced machine learning techniques.",
ServiceCatalogProvisioningDetails: {
// Add relevant provisioning details here
},
Tags: [
{ Key: "Environment", Value: "Development" },
{ Key: "Team", Value: "DataScience" }
]
});

Create a project that includes service catalog provisioned product details.

const advancedProject = await AWS.SageMaker.Project("advancedProject", {
ProjectName: "FullMachineLearningProject",
ProjectDescription: "Project for full machine learning lifecycle.",
ServiceCatalogProvisionedProductDetails: {
// Specify the provisioned product details here
},
ServiceCatalogProvisioningDetails: {
// Add relevant provisioning details here
},
Tags: [
{ Key: "ProjectType", Value: "Research" },
{ Key: "Priority", Value: "High" }
]
});

Demonstrate how to adopt an existing SageMaker Project if one already exists.

const adoptExistingProject = await AWS.SageMaker.Project("adoptExistingProject", {
ProjectName: "ExistingMachineLearningProject",
ServiceCatalogProvisioningDetails: {
// Add relevant provisioning details here
},
adopt: true // Adopts the existing resource
});