Project
The Project resource allows you to manage AWS SageMaker Projects that help organize your machine learning workflows, including associated resources and configurations.
Minimal Example
Section titled “Minimal Example”Create a basic SageMaker Project with required properties.
import AWS from "alchemy/aws/control";
const basicProject = await AWS.SageMaker.Project("basicProject", { ProjectName: "MachineLearningProject", ServiceCatalogProvisioningDetails: { // Add relevant provisioning details here }});
Enhanced Project Description
Section titled “Enhanced Project Description”Configure a SageMaker Project with a description and tags.
const detailedProject = await AWS.SageMaker.Project("detailedProject", { ProjectName: "AdvancedMachineLearningProject", ProjectDescription: "This project focuses on advanced machine learning techniques.", ServiceCatalogProvisioningDetails: { // Add relevant provisioning details here }, Tags: [ { Key: "Environment", Value: "Development" }, { Key: "Team", Value: "DataScience" } ]});
Advanced Configuration
Section titled “Advanced Configuration”Create a project that includes service catalog provisioned product details.
const advancedProject = await AWS.SageMaker.Project("advancedProject", { ProjectName: "FullMachineLearningProject", ProjectDescription: "Project for full machine learning lifecycle.", ServiceCatalogProvisionedProductDetails: { // Specify the provisioned product details here }, ServiceCatalogProvisioningDetails: { // Add relevant provisioning details here }, Tags: [ { Key: "ProjectType", Value: "Research" }, { Key: "Priority", Value: "High" } ]});
Adoption of Existing Resource
Section titled “Adoption of Existing Resource”Demonstrate how to adopt an existing SageMaker Project if one already exists.
const adoptExistingProject = await AWS.SageMaker.Project("adoptExistingProject", { ProjectName: "ExistingMachineLearningProject", ServiceCatalogProvisioningDetails: { // Add relevant provisioning details here }, adopt: true // Adopts the existing resource});