Pipeline
Learn how to create, update, and manage AWS SageMaker Pipelines using Alchemy Cloud Control.
The Pipeline resource lets you create and manage AWS SageMaker Pipelines for orchestrating complex machine learning workflows.
Minimal Example
Section titled “Minimal Example”Create a basic SageMaker Pipeline with required properties and a few common optional settings.
import AWS from "alchemy/aws/control";
const simplePipeline = await AWS.SageMaker.Pipeline("simplePipeline", { PipelineName: "SimplePipeline", PipelineDescription: "A simple pipeline for demonstration purposes.", RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole", PipelineDefinition: { // Define the pipeline steps and configurations here }, Tags: [ { Key: "Environment", Value: "Development" }, { Key: "Project", Value: "Machine Learning" } ]});
Advanced Configuration
Section titled “Advanced Configuration”Configure a pipeline with parallelism settings and a display name.
const advancedPipeline = await AWS.SageMaker.Pipeline("advancedPipeline", { PipelineName: "AdvancedPipeline", PipelineDisplayName: "Advanced ML Pipeline", PipelineDescription: "An advanced pipeline with parallel tasks.", RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole", ParallelismConfiguration: { MaxParallelExecution: 5, // Limit the maximum parallel executions MaxConcurrentExecutions: 10 // Limit the number of concurrent executions }, PipelineDefinition: { // Define the pipeline steps and configurations here }});
Adoption of Existing Resources
Section titled “Adoption of Existing Resources”Adopt an existing pipeline instead of creating a new one if it already exists.
const adoptPipeline = await AWS.SageMaker.Pipeline("adoptPipeline", { PipelineName: "ExistingPipeline", RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole", adopt: true, // Set to true to adopt the existing resource PipelineDefinition: { // Define the pipeline steps and configurations here }});
Complete Pipeline Definition
Section titled “Complete Pipeline Definition”Demonstrate a pipeline with a complete definition including steps and parameters.
const completePipeline = await AWS.SageMaker.Pipeline("completePipeline", { PipelineName: "CompleteMLPipeline", RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole", PipelineDefinition: { PipelineDefinition: { PipelineSteps: [ { Name: "DataPreprocessing", Type: "Processing", Arguments: { // Specify arguments for processing step } }, { Name: "ModelTraining", Type: "Training", Arguments: { // Specify arguments for training step } }, { Name: "ModelEvaluation", Type: "Evaluation", Arguments: { // Specify arguments for evaluation step } } ] } }});