Pipeline
The Pipeline resource lets you create and manage AWS SageMaker Pipelines for orchestrating complex machine learning workflows.
Minimal Example
Section titled “Minimal Example”Create a basic SageMaker Pipeline with required properties and a few common optional settings.
import AWS from "alchemy/aws/control";
const simplePipeline = await AWS.SageMaker.Pipeline("simplePipeline", { PipelineName: "SimplePipeline", PipelineDescription: "A simple pipeline for demonstration purposes.", RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole", PipelineDefinition: { // Define the pipeline steps and configurations here }, Tags: [ { Key: "Environment", Value: "Development" }, { Key: "Project", Value: "Machine Learning" } ]});
Advanced Configuration
Section titled “Advanced Configuration”Configure a pipeline with parallelism settings and a display name.
const advancedPipeline = await AWS.SageMaker.Pipeline("advancedPipeline", { PipelineName: "AdvancedPipeline", PipelineDisplayName: "Advanced ML Pipeline", PipelineDescription: "An advanced pipeline with parallel tasks.", RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole", ParallelismConfiguration: { MaxParallelExecution: 5, // Limit the maximum parallel executions MaxConcurrentExecutions: 10 // Limit the number of concurrent executions }, PipelineDefinition: { // Define the pipeline steps and configurations here }});
Adoption of Existing Resources
Section titled “Adoption of Existing Resources”Adopt an existing pipeline instead of creating a new one if it already exists.
const adoptPipeline = await AWS.SageMaker.Pipeline("adoptPipeline", { PipelineName: "ExistingPipeline", RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole", adopt: true, // Set to true to adopt the existing resource PipelineDefinition: { // Define the pipeline steps and configurations here }});
Complete Pipeline Definition
Section titled “Complete Pipeline Definition”Demonstrate a pipeline with a complete definition including steps and parameters.
const completePipeline = await AWS.SageMaker.Pipeline("completePipeline", { PipelineName: "CompleteMLPipeline", RoleArn: "arn:aws:iam::123456789012:role/SageMakerRole", PipelineDefinition: { PipelineDefinition: { PipelineSteps: [ { Name: "DataPreprocessing", Type: "Processing", Arguments: { // Specify arguments for processing step } }, { Name: "ModelTraining", Type: "Training", Arguments: { // Specify arguments for training step } }, { Name: "ModelEvaluation", Type: "Evaluation", Arguments: { // Specify arguments for evaluation step } } ] } }});