NotebookInstance
The NotebookInstance resource lets you manage AWS SageMaker NotebookInstances for developing and training machine learning models.
Minimal Example
Section titled “Minimal Example”Create a basic SageMaker NotebookInstance with essential properties, including the instance type and role ARN.
import AWS from "alchemy/aws/control";
const notebookInstance = await AWS.SageMaker.NotebookInstance("myNotebookInstance", { roleArn: "arn:aws:iam::123456789012:role/SageMakerExecutionRole", instanceType: "ml.t2.medium", volumeSizeInGB: 5});
Advanced Configuration
Section titled “Advanced Configuration”Configure a NotebookInstance with additional options such as KMS key for encryption and a specific lifecycle configuration.
const advancedNotebookInstance = await AWS.SageMaker.NotebookInstance("advancedNotebookInstance", { roleArn: "arn:aws:iam::123456789012:role/SageMakerExecutionRole", instanceType: "ml.t3.large", volumeSizeInGB: 10, kmsKeyId: "arn:aws:kms:us-west-2:123456789012:key/my-key-id", lifecycleConfigName: "myLifecycleConfig"});
Network Configuration
Section titled “Network Configuration”Create a NotebookInstance within a specific VPC subnet and security group for network isolation.
const networkNotebookInstance = await AWS.SageMaker.NotebookInstance("networkNotebookInstance", { roleArn: "arn:aws:iam::123456789012:role/SageMakerExecutionRole", instanceType: "ml.t3.medium", subnetId: "subnet-0ab1c2d3e4f5g6h7", securityGroupIds: [ "sg-0a1b2c3d4e5f6g7h8" ], directInternetAccess: "Disabled"});
Lifecycle Configuration Example
Section titled “Lifecycle Configuration Example”Demonstrate how to use a lifecycle configuration to execute scripts when the NotebookInstance starts.
const lifecycleNotebookInstance = await AWS.SageMaker.NotebookInstance("lifecycleNotebookInstance", { roleArn: "arn:aws:iam::123456789012:role/SageMakerExecutionRole", instanceType: "ml.t2.medium", lifecycleConfigName: "startupScriptConfig", tags: [ { Key: "Project", Value: "MLModelTraining" } ]});