Skip to content
GitHubXDiscordRSS

MlflowTrackingServer

Learn how to create, update, and manage AWS SageMaker MlflowTrackingServers using Alchemy Cloud Control.

The MlflowTrackingServer resource allows you to manage an AWS SageMaker MlflowTrackingServer for tracking machine learning experiments and managing model artifacts.

Create a basic MlflowTrackingServer instance with required properties and a common optional property.

import AWS from "alchemy/aws/control";
const mlflowTrackingServer = await AWS.SageMaker.MlflowTrackingServer("myMlflowTrackingServer", {
TrackingServerName: "my-tracking-server",
ArtifactStoreUri: "s3://my-artifact-store",
RoleArn: "arn:aws:iam::123456789012:role/my-sagemaker-role"
});

Configure the MlflowTrackingServer with additional optional properties such as MLflow version and automatic model registration.

const advancedMlflowTrackingServer = await AWS.SageMaker.MlflowTrackingServer("advancedMlflowTrackingServer", {
TrackingServerName: "advanced-tracking-server",
ArtifactStoreUri: "s3://my-advanced-artifact-store",
RoleArn: "arn:aws:iam::123456789012:role/my-sagemaker-role",
MlflowVersion: "1.20.2",
AutomaticModelRegistration: true,
WeeklyMaintenanceWindowStart: "Mon:00:00" // Maintenance window starts on Monday at midnight
});

Create a MlflowTrackingServer with a custom tracking server size.

const customSizeMlflowTrackingServer = await AWS.SageMaker.MlflowTrackingServer("customSizeMlflowTrackingServer", {
TrackingServerName: "custom-size-tracking-server",
ArtifactStoreUri: "s3://my-custom-size-artifact-store",
RoleArn: "arn:aws:iam::123456789012:role/my-sagemaker-role",
TrackingServerSize: "large" // Specify the size of the tracking server
});

Add tags to your MlflowTrackingServer for better resource management.

const taggedMlflowTrackingServer = await AWS.SageMaker.MlflowTrackingServer("taggedMlflowTrackingServer", {
TrackingServerName: "tagged-tracking-server",
ArtifactStoreUri: "s3://my-tagged-artifact-store",
RoleArn: "arn:aws:iam::123456789012:role/my-sagemaker-role",
Tags: [
{ Key: "Environment", Value: "Production" },
{ Key: "Team", Value: "DataScience" }
]
});