InferenceExperiment
Learn how to create, update, and manage AWS SageMaker InferenceExperiments using Alchemy Cloud Control.
The InferenceExperiment resource lets you create and manage AWS SageMaker InferenceExperiments for evaluating different model variants in a production environment.
Minimal Example
Section titled “Minimal Example”Create a basic InferenceExperiment with required properties and a couple of optional ones.
import AWS from "alchemy/aws/control";
const basicInferenceExperiment = await AWS.SageMaker.InferenceExperiment("basicInferenceExperiment", { Name: "BasicInferenceExperiment", RoleArn: "arn:aws:iam::123456789012:role/SageMakerExecutionRole", ModelVariants: [ { ModelName: "MyModelVariantA", VariantName: "VariantA", InitialInstanceCount: 1, InstanceType: "ml.m5.large" }, { ModelName: "MyModelVariantB", VariantName: "VariantB", InitialInstanceCount: 1, InstanceType: "ml.m5.large" } ], EndpointName: "MySageMakerEndpoint", Description: "A simple inference experiment to compare model variants."});
Advanced Configuration
Section titled “Advanced Configuration”Configure an InferenceExperiment with advanced settings, including data storage configuration and shadow mode.
const advancedInferenceExperiment = await AWS.SageMaker.InferenceExperiment("advancedInferenceExperiment", { Name: "AdvancedInferenceExperiment", RoleArn: "arn:aws:iam::123456789012:role/SageMakerExecutionRole", ModelVariants: [ { ModelName: "MyModelVariantA", VariantName: "VariantA", InitialInstanceCount: 1, InstanceType: "ml.m5.large" }, { ModelName: "MyModelVariantB", VariantName: "VariantB", InitialInstanceCount: 1, InstanceType: "ml.m5.large" } ], EndpointName: "MySageMakerEndpoint", DataStorageConfig: { S3Path: "s3://my-bucket/inference-data/", KmsKey: "arn:aws:kms:us-west-2:123456789012:key/abcd1234-a123-456a-a12b-a123b4cd56ef" }, ShadowModeConfig: { ShadowModelVariants: [ { ModelName: "MyModelVariantShadow", VariantName: "ShadowVariant", InitialInstanceCount: 1, InstanceType: "ml.m5.large" } ] }, Description: "An advanced inference experiment to evaluate model performance."});
Scheduled Inference Experiment
Section titled “Scheduled Inference Experiment”Create an InferenceExperiment with a specific schedule for running the evaluation.
const scheduledInferenceExperiment = await AWS.SageMaker.InferenceExperiment("scheduledInferenceExperiment", { Name: "ScheduledInferenceExperiment", RoleArn: "arn:aws:iam::123456789012:role/SageMakerExecutionRole", ModelVariants: [ { ModelName: "MyModelVariantA", VariantName: "VariantA", InitialInstanceCount: 1, InstanceType: "ml.m5.large" } ], EndpointName: "MySageMakerEndpoint", Schedule: { StartTime: new Date(Date.now() + 1000 * 60 * 60), // Start in 1 hour EndTime: new Date(Date.now() + 1000 * 60 * 60 * 24), // End in 24 hours Frequency: "Daily" // Runs every day }, Description: "A scheduled inference experiment to evaluate model performance daily."});