Skip to content
GitHubXDiscordRSS

ImageVersion

Learn how to create, update, and manage AWS SageMaker ImageVersions using Alchemy Cloud Control.

The ImageVersion resource lets you manage AWS SageMaker ImageVersions for deploying machine learning models and algorithms.

This example demonstrates how to create a basic ImageVersion with required properties and a common optional property.

import AWS from "alchemy/aws/control";
const basicImageVersion = await AWS.SageMaker.ImageVersion("basicImageVersion", {
ImageName: "my-custom-image",
BaseImage: "my-base-image:latest",
Horovod: true // Enable Horovod support for distributed training
});

This example shows how to configure an ImageVersion with additional properties such as Processor, JobType, and ReleaseNotes.

const advancedImageVersion = await AWS.SageMaker.ImageVersion("advancedImageVersion", {
ImageName: "my-advanced-image",
BaseImage: "my-advanced-base-image:latest",
Processor: "ml.g4dn.xlarge",
JobType: "Training",
ReleaseNotes: "Initial version with optimized model performance."
});

This example illustrates how to create an ImageVersion with multiple aliases for easier reference.

const versionWithAliases = await AWS.SageMaker.ImageVersion("versionWithAliases", {
ImageName: "my-image-with-aliases",
BaseImage: "my-base-image:latest",
Aliases: ["v1.0", "stable", "latest"],
ReleaseNotes: "Version 1.0 with significant improvements."
});

Specifying Programming Language and Framework

Section titled “Specifying Programming Language and Framework”

This example showcases how to specify the programming language and ML framework for the ImageVersion.

const imageVersionWithFramework = await AWS.SageMaker.ImageVersion("imageVersionWithFramework", {
ImageName: "my-ml-image",
BaseImage: "my-ml-base-image:latest",
ProgrammingLang: "Python",
MLFramework: "TensorFlow",
ReleaseNotes: "Updated to TensorFlow 2.4 with new features."
});