ImageVersion
The ImageVersion resource lets you manage AWS SageMaker ImageVersions for deploying machine learning models and algorithms.
Minimal Example
Section titled “Minimal Example”This example demonstrates how to create a basic ImageVersion with required properties and a common optional property.
import AWS from "alchemy/aws/control";
const basicImageVersion = await AWS.SageMaker.ImageVersion("basicImageVersion", { ImageName: "my-custom-image", BaseImage: "my-base-image:latest", Horovod: true // Enable Horovod support for distributed training});
Advanced Configuration
Section titled “Advanced Configuration”This example shows how to configure an ImageVersion with additional properties such as Processor, JobType, and ReleaseNotes.
const advancedImageVersion = await AWS.SageMaker.ImageVersion("advancedImageVersion", { ImageName: "my-advanced-image", BaseImage: "my-advanced-base-image:latest", Processor: "ml.g4dn.xlarge", JobType: "Training", ReleaseNotes: "Initial version with optimized model performance."});
Using Multiple Aliases
Section titled “Using Multiple Aliases”This example illustrates how to create an ImageVersion with multiple aliases for easier reference.
const versionWithAliases = await AWS.SageMaker.ImageVersion("versionWithAliases", { ImageName: "my-image-with-aliases", BaseImage: "my-base-image:latest", Aliases: ["v1.0", "stable", "latest"], ReleaseNotes: "Version 1.0 with significant improvements."});
Specifying Programming Language and Framework
Section titled “Specifying Programming Language and Framework”This example showcases how to specify the programming language and ML framework for the ImageVersion.
const imageVersionWithFramework = await AWS.SageMaker.ImageVersion("imageVersionWithFramework", { ImageName: "my-ml-image", BaseImage: "my-ml-base-image:latest", ProgrammingLang: "Python", MLFramework: "TensorFlow", ReleaseNotes: "Updated to TensorFlow 2.4 with new features."});