EndpointConfig
Learn how to create, update, and manage AWS SageMaker EndpointConfigs using Alchemy Cloud Control.
The EndpointConfig resource lets you manage AWS SageMaker EndpointConfigs for deploying machine learning models at scale.
Minimal Example
Section titled “Minimal Example”Create a basic EndpointConfig with required properties and one optional property.
import AWS from "alchemy/aws/control";
const basicEndpointConfig = await AWS.SageMaker.EndpointConfig("basic-endpoint-config", { ProductionVariants: [{ VariantName: "AllTraffic", ModelName: "my-model", InitialInstanceCount: 1, InstanceType: "ml.m5.large" }], DataCaptureConfig: { CaptureOptions: [{ CaptureMode: "Input" }], DestinationS3Uri: "s3://my-data-capture-bucket/", CaptureContentTypeHeader: { CsvContentTypes: ["text/csv"], JsonContentTypes: ["application/json"] } }});
Advanced Configuration
Section titled “Advanced Configuration”Configure an EndpointConfig with shadow production variants and network isolation.
const advancedEndpointConfig = await AWS.SageMaker.EndpointConfig("advanced-endpoint-config", { ProductionVariants: [{ VariantName: "MainTraffic", ModelName: "my-main-model", InitialInstanceCount: 2, InstanceType: "ml.m5.large" }], ShadowProductionVariants: [{ VariantName: "ShadowTraffic", ModelName: "my-shadow-model", InitialInstanceCount: 1, InstanceType: "ml.m5.large" }], EnableNetworkIsolation: true, KmsKeyId: "arn:aws:kms:us-east-1:123456789012:key/example-key-id"});
Custom VPC Configuration
Section titled “Custom VPC Configuration”Create an EndpointConfig that specifies a VPC configuration for enhanced security.
const vpcEndpointConfig = await AWS.SageMaker.EndpointConfig("vpc-endpoint-config", { ProductionVariants: [{ VariantName: "VPCConfiguredTraffic", ModelName: "my-vpc-model", InitialInstanceCount: 1, InstanceType: "ml.m5.large" }], VpcConfig: { SecurityGroupIds: ["sg-0123456789abcdef0"], Subnets: ["subnet-0123456789abcdef0", "subnet-0fedcba9876543210"] }});
Async Inference Configuration
Section titled “Async Inference Configuration”Set up an EndpointConfig with asynchronous inference capabilities.
const asyncInferenceEndpointConfig = await AWS.SageMaker.EndpointConfig("async-inference-endpoint-config", { ProductionVariants: [{ VariantName: "AsyncInferenceTraffic", ModelName: "my-async-model", InitialInstanceCount: 1, InstanceType: "ml.m5.large" }], AsyncInferenceConfig: { OutputConfig: { S3OutputPath: "s3://my-async-output-bucket/", KmsKeyId: "arn:aws:kms:us-east-1:123456789012:key/example-key-id" }, ClientId: "my-client-id" }});