Skip to content
GitHubXDiscordRSS

Device

Learn how to create, update, and manage AWS SageMaker Devices using Alchemy Cloud Control.

The Device resource allows you to manage AWS SageMaker Devices for deploying machine learning models on edge devices.

Create a basic SageMaker Device associated with a device fleet:

import AWS from "alchemy/aws/control";
const basicDevice = await AWS.SageMaker.Device("basicDevice", {
DeviceFleetName: "myDeviceFleet",
Device: {
DeviceName: "myEdgeDevice",
DeviceType: "RaspberryPi"
},
Tags: [
{ Key: "Project", Value: "MLEdge" },
{ Key: "Environment", Value: "Production" }
]
});

Configure a SageMaker Device with additional properties like tags and adopt existing resource option:

const advancedDevice = await AWS.SageMaker.Device("advancedDevice", {
DeviceFleetName: "myDeviceFleet",
Device: {
DeviceName: "advancedEdgeDevice",
DeviceType: "JetsonNano"
},
Tags: [
{ Key: "Project", Value: "MLEdge" },
{ Key: "Environment", Value: "Staging" }
],
adopt: true // adopt existing resource if it exists
});

If you want to adopt an existing device without creating a new one, you can set the adopt property to true:

const existingDevice = await AWS.SageMaker.Device("existingDevice", {
DeviceFleetName: "myDeviceFleet",
Device: {
DeviceName: "existingDevice",
DeviceType: "RaspberryPi"
},
adopt: true
});

You can specify tags to categorize your devices effectively, which can be useful for organization and billing:

const taggedDevice = await AWS.SageMaker.Device("taggedDevice", {
DeviceFleetName: "myDeviceFleet",
Device: {
DeviceName: "taggedEdgeDevice",
DeviceType: "JetsonTX2"
},
Tags: [
{ Key: "Owner", Value: "DataScienceTeam" },
{ Key: "Purpose", Value: "ModelInference" }
]
});