Skip to content
GitHubXDiscord

Device

The Device resource allows you to manage AWS SageMaker Devices for deploying machine learning models on edge devices.

Create a basic SageMaker Device associated with a device fleet:

import AWS from "alchemy/aws/control";
const basicDevice = await AWS.SageMaker.Device("basicDevice", {
DeviceFleetName: "myDeviceFleet",
Device: {
DeviceName: "myEdgeDevice",
DeviceType: "RaspberryPi"
},
Tags: [
{ Key: "Project", Value: "MLEdge" },
{ Key: "Environment", Value: "Production" }
]
});

Configure a SageMaker Device with additional properties like tags and adopt existing resource option:

const advancedDevice = await AWS.SageMaker.Device("advancedDevice", {
DeviceFleetName: "myDeviceFleet",
Device: {
DeviceName: "advancedEdgeDevice",
DeviceType: "JetsonNano"
},
Tags: [
{ Key: "Project", Value: "MLEdge" },
{ Key: "Environment", Value: "Staging" }
],
adopt: true // adopt existing resource if it exists
});

If you want to adopt an existing device without creating a new one, you can set the adopt property to true:

const existingDevice = await AWS.SageMaker.Device("existingDevice", {
DeviceFleetName: "myDeviceFleet",
Device: {
DeviceName: "existingDevice",
DeviceType: "RaspberryPi"
},
adopt: true
});

You can specify tags to categorize your devices effectively, which can be useful for organization and billing:

const taggedDevice = await AWS.SageMaker.Device("taggedDevice", {
DeviceFleetName: "myDeviceFleet",
Device: {
DeviceName: "taggedEdgeDevice",
DeviceType: "JetsonTX2"
},
Tags: [
{ Key: "Owner", Value: "DataScienceTeam" },
{ Key: "Purpose", Value: "ModelInference" }
]
});