Skip to content
GitHubXDiscordRSS

Pipeline

Learn how to create, update, and manage AWS IoTAnalytics Pipelines using Alchemy Cloud Control.

The Pipeline resource lets you create and manage AWS IoTAnalytics Pipelines for processing and analyzing IoT data streams.

Create a basic IoTAnalytics Pipeline with a name and a single activity.

import AWS from "alchemy/aws/control";
const minimalPipeline = await AWS.IoTAnalytics.Pipeline("basicPipeline", {
PipelineName: "BasicPipeline",
PipelineActivities: [
{
Channel: {
ChannelName: "myChannel",
Next: "myActivity"
}
}
],
Tags: [
{
Key: "Environment",
Value: "Development"
}
]
});

Configure a pipeline with multiple activities and more advanced settings like tags.

const advancedPipeline = await AWS.IoTAnalytics.Pipeline("advancedPipeline", {
PipelineName: "AdvancedPipeline",
PipelineActivities: [
{
Channel: {
ChannelName: "myChannel",
Next: "dataProcessingActivity"
}
},
{
Math: {
Name: "calculateAverage",
Attribute: "temperature",
Next: "storeInDatastore"
}
},
{
Datastore: {
DatastoreName: "myDatastore",
Next: null
}
}
],
Tags: [
{
Key: "Project",
Value: "IoTAnalytics"
},
{
Key: "Owner",
Value: "DataTeam"
}
]
});

Set up a pipeline for real-time data processing with a filtering activity.

const realTimePipeline = await AWS.IoTAnalytics.Pipeline("realTimePipeline", {
PipelineName: "RealTimeDataProcessing",
PipelineActivities: [
{
Filter: {
Name: "filterTemperature",
Filter: "temperature > 20",
Next: "storeFilteredData"
}
},
{
Datastore: {
DatastoreName: "filteredDataStore",
Next: null
}
}
]
});

Create a pipeline that includes multiple transformation activities for complex data handling.

const complexPipeline = await AWS.IoTAnalytics.Pipeline("complexPipeline", {
PipelineName: "ComplexDataTransformation",
PipelineActivities: [
{
Math: {
Name: "calculateHumidityIndex",
Attribute: "humidity",
Next: "aggregateData"
}
},
{
Aggregate: {
Name: "aggregateTemperature",
Attribute: "temperature",
AggregationType: "AVG",
Next: null
}
}
]
});