MLTransform
The MLTransform resource lets you create and manage AWS Glue MLTransforms for transforming data using machine learning algorithms.
Minimal Example
Section titled “Minimal Example”Create a basic MLTransform with required properties and a few common optional settings.
import AWS from "alchemy/aws/control";
const mlTransform = await AWS.Glue.MLTransform("basicTransform", { role: "arn:aws:iam::123456789012:role/service-role/AWSGlueServiceRole", transformParameters: { // Example transform parameters transformations: [ { name: "SampleTransform", parameters: { modelType: "linearRegression" } } ] }, inputRecordTables: [ { name: "inputTable", databaseName: "myDatabase" } ], description: "A simple MLTransform for demonstration purposes"});
Advanced Configuration
Section titled “Advanced Configuration”Configure an MLTransform with advanced settings, including encryption and increased capacity.
const advancedMlTransform = await AWS.Glue.MLTransform("advancedTransform", { role: "arn:aws:iam::123456789012:role/service-role/AWSGlueServiceRole", transformParameters: { transformations: [ { name: "ComplexTransform", parameters: { modelType: "randomForest", featureColumns: ["column1", "column2"], targetColumn: "target" } } ] }, inputRecordTables: [ { name: "inputTable", databaseName: "myDatabase" } ], transformEncryption: { // Example encryption configuration mlUserDataEncryption: { // Encryption settings mode: "DISABLED" } }, maxCapacity: 10, tags: { Project: "MLTransformDemo", Environment: "Development" }});
Using Custom Worker Types
Section titled “Using Custom Worker Types”Create an MLTransform that specifies a custom worker type and number of workers.
const customWorkerMlTransform = await AWS.Glue.MLTransform("customWorkerTransform", { role: "arn:aws:iam::123456789012:role/service-role/AWSGlueServiceRole", transformParameters: { transformations: [ { name: "CustomWorkerTransform", parameters: { modelType: "supportVectorMachine", hyperparameters: { kernel: "rbf", gamma: "scale" } } } ] }, inputRecordTables: [ { name: "inputTable", databaseName: "myDatabase" } ], workerType: "G.1X", numberOfWorkers: 2, description: "MLTransform using a custom worker type"});
Adding Retry Logic
Section titled “Adding Retry Logic”Configure an MLTransform with retry logic for handling failures.
const retryMlTransform = await AWS.Glue.MLTransform("retryTransform", { role: "arn:aws:iam::123456789012:role/service-role/AWSGlueServiceRole", transformParameters: { transformations: [ { name: "RetryTransform", parameters: { modelType: "decisionTree", maxDepth: 5 } } ] }, inputRecordTables: [ { name: "inputTable", databaseName: "myDatabase" } ], maxRetries: 3, timeout: 60, description: "MLTransform with retry logic for fault tolerance"});
These examples demonstrate various configurations for the AWS Glue MLTransform resource, helping you to leverage machine learning for data transformation efficiently.