Skip to content
GitHubXDiscord

Schedule

The Schedule resource allows you to manage AWS DataBrew Schedules for automating jobs on a specified cadence.

Create a basic DataBrew Schedule with required properties and one optional tag:

import AWS from "alchemy/aws/control";
const dataBrewSchedule = await AWS.DataBrew.Schedule("daily-data-processing", {
Name: "DailyDataProcessing",
CronExpression: "cron(0 12 * * ? *)",
JobNames: ["DataCleaningJob"],
Tags: [
{ Key: "Environment", Value: "Production" }
]
});

Configure a DataBrew Schedule with additional options, such as multiple jobs and additional tags:

const advancedSchedule = await AWS.DataBrew.Schedule("weekly-data-reports", {
Name: "WeeklyDataReports",
CronExpression: "cron(0 10 ? * MON *)",
JobNames: ["WeeklySalesReportJob", "WeeklyInventoryJob"],
Tags: [
{ Key: "Department", Value: "Sales" },
{ Key: "Status", Value: "Active" }
]
});

Create a DataBrew Schedule while adopting an existing resource if it already exists:

const adoptSchedule = await AWS.DataBrew.Schedule("adopted-schedule", {
Name: "AdoptedExistingSchedule",
CronExpression: "cron(0 15 * * ? *)",
JobNames: ["AdoptedJob"],
adopt: true // This will attempt to adopt the existing schedule if present
});

Update the tags of an existing DataBrew Schedule to reflect changes in project classification:

const updatedTagsSchedule = await AWS.DataBrew.Schedule("updated-tags-schedule", {
Name: "UpdatedTagsSchedule",
CronExpression: "cron(0 9 * * ? *)",
JobNames: ["DataQualityCheckJob"],
Tags: [
{ Key: "Project", Value: "DataQuality" },
{ Key: "LastUpdated", Value: "2023-10-01" }
]
});