Dataset
Learn how to create, update, and manage AWS DataBrew Datasets using Alchemy Cloud Control.
The Dataset resource lets you manage AWS DataBrew Datasets for data preparation and transformation tasks.
Minimal Example
Section titled “Minimal Example”Create a basic DataBrew Dataset with required properties and one optional property:
import AWS from "alchemy/aws/control";
const basicDataset = await AWS.DataBrew.Dataset("basic-dataset", { Name: "SalesData", Input: { S3Input: { Path: "s3://my-bucket/sales-data/", Format: "CSV" } }, Format: "CSV" // Optional property});
Advanced Configuration
Section titled “Advanced Configuration”Configure a DataBrew Dataset with additional options such as format options and tags:
const advancedDataset = await AWS.DataBrew.Dataset("advanced-dataset", { Name: "CustomerFeedback", Input: { S3Input: { Path: "s3://my-bucket/customer-feedback/", Format: "JSON" } }, Format: "JSON", FormatOptions: { Json: { MultiLine: true } }, Tags: [ { Key: "Environment", Value: "Production" }, { Key: "Project", Value: "CustomerInsights" } ]});
Using Path Options
Section titled “Using Path Options”Create a DataBrew Dataset with specific path options to refine data input:
const pathOptionsDataset = await AWS.DataBrew.Dataset("path-options-dataset", { Name: "InventoryData", Input: { S3Input: { Path: "s3://my-bucket/inventory-data/", Format: "CSV" } }, PathOptions: { LastModified: "2023-01-01T00:00:00Z", MaxRecords: 100 }});
Adopting Existing Resources
Section titled “Adopting Existing Resources”Adopt an existing DataBrew Dataset without failing if it already exists:
const adoptExistingDataset = await AWS.DataBrew.Dataset("adopt-existing-dataset", { Name: "ExistingSalesData", Input: { S3Input: { Path: "s3://my-bucket/existing-sales-data/", Format: "CSV" } }, adopt: true // Allows adoption of an existing resource});