Dataset
The Dataset resource lets you manage AWS DataBrew Datasets for data preparation and transformation tasks.
Minimal Example
Section titled “Minimal Example”Create a basic DataBrew Dataset with required properties and one optional property:
import AWS from "alchemy/aws/control";
const basicDataset = await AWS.DataBrew.Dataset("basic-dataset", { Name: "SalesData", Input: { S3Input: { Path: "s3://my-bucket/sales-data/", Format: "CSV" } }, Format: "CSV" // Optional property});
Advanced Configuration
Section titled “Advanced Configuration”Configure a DataBrew Dataset with additional options such as format options and tags:
const advancedDataset = await AWS.DataBrew.Dataset("advanced-dataset", { Name: "CustomerFeedback", Input: { S3Input: { Path: "s3://my-bucket/customer-feedback/", Format: "JSON" } }, Format: "JSON", FormatOptions: { Json: { MultiLine: true } }, Tags: [ { Key: "Environment", Value: "Production" }, { Key: "Project", Value: "CustomerInsights" } ]});
Using Path Options
Section titled “Using Path Options”Create a DataBrew Dataset with specific path options to refine data input:
const pathOptionsDataset = await AWS.DataBrew.Dataset("path-options-dataset", { Name: "InventoryData", Input: { S3Input: { Path: "s3://my-bucket/inventory-data/", Format: "CSV" } }, PathOptions: { LastModified: "2023-01-01T00:00:00Z", MaxRecords: 100 }});
Adopting Existing Resources
Section titled “Adopting Existing Resources”Adopt an existing DataBrew Dataset without failing if it already exists:
const adoptExistingDataset = await AWS.DataBrew.Dataset("adopt-existing-dataset", { Name: "ExistingSalesData", Input: { S3Input: { Path: "s3://my-bucket/existing-sales-data/", Format: "CSV" } }, adopt: true // Allows adoption of an existing resource});